15. 3Sum
MediumLeetCodeGiven an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1
Input: nums =
[-1,0,1,2,-1,-4]Output:[[-1,-1,2],[-1,0,1]]Explanation:nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are[-1,0,1]and[-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2
Input: nums =
[0,1,1]Output:[]Explanation: The only possible triplet does not sum up to0.
Example 3
Input: nums =
[0,0,0]Output:[[0,0,0]]Explanation: The only possible triplet sums up to0.
Constraints
3 <= nums.length <= 3000-10^5 <= nums[i] <= 10^5
How to solve the problem
- Brute Force(O(n^3))
class Solution:
def threeSum(self, nums:List[int]) -> List[List[int]]:
l = len(nums)
result = []
for i in range(l):
for j in range(i+1, l):
for k in range(j+1, l):
triplet = sorted([nums[i], nums[j], nums[k]])
if nums[i]+nums[j]+nums[k] == 0 and triplet not in result:
result.append(triplet)
return result- Two Pointers
class Solution:
def threeSum(self, nums:List[int]) -> List[List[int]]:
nums.sort()
l = len(nums)
result = []
for i in range(l):
if i>0 and nums[i] == nums[i-1]: # remove repeat i
continue
if nums[i] > 0:
break
left = i+1
right = l - 1
s = 0
while left < right:
triplet = [nums[i], nums[left], nums[right]]
s = nums[i] + nums[left] + nums[right]
if s < 0:
left += 1
elif s > 0:
right -= 1
elif s == 0:
left += 1
right -= 1
result.append(triplet)
# remove repeat left and right
while left < right and nums[left] == nums[left-1]:
left += 1
while left < right and nums[right] == nums[right+1]:
right -= 1
return resultComplexity
- Brute Force: Time complexity: O(n^3), Space complexity: O(1)
- Two Pointers: Time complexity: O(n^2), Space complexity: O(1)
- Sorting takes O(n log n), and the nested loops take O(n^2), so overall O(n^2)
Comments
No comments yet. Be the first to comment!